Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 24(6)2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2286210

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that causes lethal watery diarrhea in neonatal pigs and poses economic and public health burdens. Currently, there are no effective antiviral agents against PDCoV. Curcumin is the active ingredient extracted from the rhizome of turmeric, which has a potential pharmacological value because it exhibits antiviral properties against several viruses. Here, we described the antiviral effect of curcumin against PDCoV. At first, the potential relationships between the active ingredients and the diarrhea-related targets were predicted through a network pharmacology analysis. Twenty-three nodes and 38 edges were obtained using a PPI analysis of eight compound-targets. The action target genes were closely related to the inflammatory and immune related signaling pathways, such as the TNF signaling pathway, Jak-STAT signaling pathway, and so on. Moreover, IL-6, NR3C2, BCHE and PTGS2 were identified as the most likely targets of curcumin by binding energy and 3D protein-ligand complex analysis. Furthermore, curcumin inhibited PDCoV replication in LLC-PK1 cells at the time of infection in a dose-dependent way. In poly (I:C) pretreated LLC-PK1 cells, PDCoV reduced IFN-ß production via the RIG-I pathway to evade the host's antiviral innate immune response. Meanwhile, curcumin inhibited PDCoV-induced IFN-ß secretion by inhibiting the RIG-I pathway and reduced inflammation by inhibiting IRF3 or NF-κB protein expression. Our study provides a potential strategy for the use of curcumin in preventing diarrhea caused by PDCoV in piglets.


Subject(s)
Coronavirus , Curcumin , Swine Diseases , Animals , Swine , LLC-PK1 Cells , Curcumin/pharmacology , Curcumin/metabolism , Coronavirus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Diarrhea
2.
Microbiol Spectr ; : e0219822, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2097937

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus in pigs, is one of the major pathogens for lethal watery diarrhea in piglets and poses a threat to public health because of its potential for interspecies transmission to humans. 25-Hydroxycholesterol (25HC), a derivative of cholesterol, exhibits multiple potential modulating host responses to pathogens, including viruses and bacteria, as well as pathogen-induced inflammation, while its antiviral effect on PDCoV and how it mediates the biological process of host cells to counter against infections remain poorly understood. Here, we thoroughly explored the antiviral effect of 25HC on PDCoV infection and tried to elucidate the underlying mechanisms. 25HC showed no toxic effect in LLC-PK1 cells and exerted antiviral ability against PDCoV infection in vitro. The viral cycle and time-of-addition analyses showed that 25HC mainly restricted the early and middle periods of the PDCoV postentry stage to inhibit infection. 25HC regulated disordered cholesterol metabolism induced by PDCoV infection and stimulated interferon-related lipid droplet accumulation. Transforming growth factor ß1 (TGF-ß1), screened by bioinformatic analyses, seemed to play an important role in PDCoV infection and was downregulated by 25HC. One interesting finding is that inhibition of TGF-ß1 with the inhibitor asiaticoside exhibited a similar antiviral capacity to 25HC and demonstrated regulation of cholesterol metabolism. Taking all of the findings together, we verified the antiviral effect of 25HC on PDCoV through interference with cholesterol metabolism, which may be related to its suppression of TGFß1. IMPORTANCE As an emerging enteropathogenic coronavirus in pigs, porcine deltacoronavirus (PDCoV) causes giant economic loss in the pig industry because of lethal diarrhea and possesses the potential for transmission from animals to humans. Several pieces of evidence have suggested the antiviral potential of cholesterol-25-hydroxylase and importance of cholesterol in viral infection. This study reports that 25-hydroxycholesterol (25HC) significantly restricted PDCoV infection through modulation of cholesterol metabolism, and we identified that lipid droplets play important roles in interferon response against virus infection. Moreover, this study identified the importance of TGF-ß1 in CoV infection by bioinformatic analysis and verified that the inhibition of TGF-ß1 showed anti-PDCoV capacity. Moreover, we uncovered the relationship between TGF-ß and cholesterol metabolism initially. Given that the importance of cholesterol in viral infection, 25HC has a great potential to treat PDCoV infection and TGF-ß1 can be a crucial antiviral target.

SELECTION OF CITATIONS
SEARCH DETAIL